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Abstract

The papers [2, 3] establish the connection between importance sam-
pling algorithms for estimating rare-event probabilities, two-person
zero-sum differential games, and the associated Isaacs equation. In or-
der to construct nearly optimal schemes in a general setting, one must
consider dynamic schemes, i.e., changes of measure that, in the course
of a single simulation, can depend on the outcome of the simulation
up till that time. The present paper and a companion paper [4] show
that classical sense subsolutions of the Isaacs equation provide a basic
and flexible tool for the construction and analysis of nearly optimal
schemes. Asymptotic analysis is the topic of the present paper, while
[4] focuses on explicit methods for the construction of subsolutions,
implementation aspects and numerical results.
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1 Introduction

In a pair of recent papers [2, 3], we discuss how one can characterize the
optimal achievable performance of importance sampling schemes in the large
deviation limit in terms of a deterministic differential game. The value
function of the game can, in turn, be characterized as the solution to a
certain nonlinear partial differential equation (PDE) known as an Isaacs
equation. Asymptotically optimal importance sampling schemes are then
constructed based on this solution.

The purpose of the present paper and a companion paper is to explore
this connection in further depth. More precisely, we show how one can
construct importance sampling schemes based on subsolutions of the Isaacs
equation. Since a solution is always a subsolution, this leads to a more gen-
eral class of schemes. The main result of the paper is a basic result on the
asymptotic performance of importance sampling schemes that are based on
a given subsolution. The performance is in fact characterized by the value
of the subsolution at a particular point. The proof is carried out in a general
setting that contains as special cases sums of independent identically dis-
tributed (iid) random variables and the empirical measure of a finite-state
Markov chain. However, its potential application is much broader, and in-
cludes systems with state dependencies and small noise effects, solutions to
stochastic differential equations, systems with constrained dynamics (e.g.,
queuing networks), and to different forms of the expected value (e.g., prob-
abilities of path dependent events). Some of these developments will be
reported elsewhere.

One is often interested in properties other than just asymptotic optimal-
ity (e.g., ease of construction, ease of implementation). It turns out that
one can often construct subsolutions that have a much simpler structure
than the actual solution, and which induce schemes that are asymptotically
optimal. This is important since the simplicity of the subsolution is usually
reflected in the schemes they generate. It is therefore important to develop
flexible techniques for the construction of subsolutions. That is the topic of
the companion paper [4], which also presents some numerical results for the
broader class of applications mentioned in the last paragraph.

The paper is organized as follows. Since the underlying game and Isaacs
equation are not yet widely exposed in the importance sampling litera-
ture, we give some heuristics and a formal overview in Section 2 in the
setting of sums of iid random variables. In particular, we formally derive
the Isaacs equation, and indicate why subsolutions to this equation both
suggest schemes and serve as a basic tool in their analysis. In Section 3
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the general model and assumptions are stated. Importance sampling for
Markov chains uses a collection of eigenfunctions that are related to the
transition kernel of the chain, and Section 4 reviews the properties of these
eigenfunctions. Section 5 identifies the Isaacs equation appropriate for the
class of importance sampling problems introduced in Section 3, and Section
6 constructs the importance sampling schemes that are associated with par-
ticular subsolutions. The main result of the paper analyzes the asymptotic
variance of a scheme associated with a given subsolution, and characterizes
the performance of the scheme in terms of the value of the subsolution at
a particular point. This result is stated and proved in Section 7. Finally, a
tightness result needed for the asymptotic analysis is proved in the appendix.

Notation. For a Polish space S, P(S) denotes the collection of all proba-
bility measures on (S,B(S)), where B(S) is the Borel σ-algebra. There will
be many instances in this paper where we decompose measures on a product
space as the product of a marginal distribution and a stochastic kernel. The
following notation will be used. Suppose that µ ∈ P(S1×S2) (with each Si
a Polish space) is such a probability measure. Then [µ]1 will denote the first
marginal of µ, and µ(dy2|y1) will denote the stochastic kernel on S2 given
S1 such that µ(dy1 × dy2) = [µ]1(dy1)µ(dy2|y1). Quantities such as [µ]2,
µ(dy1|y2), and the extension to products of more than two Polish spaces
are all defined in the analogous fashion. Given µ ∈ P(S1) and a stochastic
kernel q on S2 given S1, we let µ⊗ q denote µ(dy1)q(dy2|y1) ∈ P(S1 × S2).

2 An Introduction to the Role of Subsolutions

This section describes how an Isaacs equation arises in importance sampling,
how subsolutions to that equation can be constructed, how they induce
importance sampling schemes, and the implications for performance of the
schemes. Since it is an overview, we will not give all details and will not
be precise regarding all necessary assumptions. The overview is provided in
the simplest possible setting: sums of iid random variables. The rest of the
paper and the companion paper will consider more elaborate models.

2.1 Problem formulation for sums of iid random variables

Consider

Xn
.
=
1

n

n

i=1

Yi,

3



where the {Yi, i ∈ N} are iid with distribution µ. For α ∈ Rd let

H(α)
.
= log

Rd
e α,y µ(dy),

where we assume Rd exp α, y µ(dy) < ∞ for each such α. Consider also
the Legendre transform

L(β)
.
= sup

α∈Rd
[ α,β −H(α)] .

Importance sampling is a Monte Carlo method for the estimation of
expected values. One samples from a distribution that may differ from the
true distribution, and in order to guarantee that the resulting estimate is
unbiased one multiplies each sample by the appropriate Radon-Nikodým
derivative. The goal is then to choose the sampling distribution so that this
estimate has low variance. Suppose the functional of interest is

E exp {−nF (Xn)} .
In the context of sums of iid random variables, one typically uses the fol-
lowing parametric family of exponential changes of measure to generate the
replacements for the Yi:

µα(dy)
.
= e α,y −H(α)µ(dy).

In constructing the replacement for Xn we use a dynamic change of measure.
For a function ᾱ(x, t) : Rd × [0, 1] → Rd recursively define the following
quantities. Let X̄n

0 = 0, and assume that X̄n
j , Ȳ

n
j , j = 1, . . . , i have been

defined. Let Ȳ ni+1, conditioned on X̄
n
j , Ȳ

n
j , j = 1, . . . , i, have distribution

µᾱ(X̄n
i ,i/n)

, and then set X̄n
i+1

.
= X̄n

i + Ȳ
n
i+1/n. When X̄

n
i , Ȳ

n
i have been

defined for all i = 1, . . . , n, set

Zn
.
= e−nF (X̄

n
n )
n−1

i=0

eH(ᾱ(X̄
n
i ,i/n))− ᾱ(X̄n

i ,i/n),Ȳ
n
i+1 .

It is easy to check that EZn = Ee−nF (Xn), and so the average of K indepen-
dent samples of Zn converges almost surely to Ee−nF (Xn) as K →∞. Since
the estimator is unbiased, to minimize the variance one can minimize the
second moment, and to do this it is enough to minimize the second moment
of the single sample Zn.

We consider the problem of minimizing the second moment as a control
problem, with ᾱ the control. It is here that the problem connects naturally

4



with a PDE. To make the connection we must extend the problem slightly.
For i ∈ N∪{0} and x ∈ Rd, define X̄n

j , j = i, . . . , n−1 as above save X̄n
i = x,

and then define

V n(x, i)
.
= inf

ᾱ
E

e−nF (X̄n
n )
n−1

j=i

eH(ᾱ(X̄
n
j ,j/n))− ᾱ(X̄n

j ,j/n),Ȳ
n
j+1

2 .
It will be more convenient to express this in terms of the original random
variables:

V n(x, i)
.
= inf

ᾱ
E

e−n2F (Xn
n )
n−1

j=i

eH(ᾱ(X
n
j ,j/n))− ᾱ(Xn

j ,j/n),Y
n
j+1

 .
Owing to the exponential scaling in n, one gets a simple asymptotic problem
by considering the logarithmic transform

Wn(x, i) = − 1
n
log V n(x, i).

The performance of the scheme corresponding to ᾱ can then be character-
ized in terms of lim infn→∞Wn(0, 0), with larger values indicating better
performance.

2.2 The associated Isaacs equation

V n is the value function of a discrete time stochastic control problem, and
as such, satisfies the dynamic programming equation

V n(x, i) = inf
α Rd

eH(α)− α,y V n(x+ y/n, i+ 1)µ(dy) .

A variational formula involving relative entropy (see [1, Section 1.4] and
below) shows how to represent exponential integrals in terms of relative
entropy. For γ ∈ P(Rd) with γ µ and log (dγ/dµ) integrable with respect
to γ set

R(γ µ) =
Rd
log

dγ

dµ
dγ,

and otherwise set R(γ µ) = ∞. Then for any bounded and continuous
function f : Rd → R,

− log
Rd
e−f(y)µ(dy) = inf

γ∈P(Rd)
R(γ µ) +

Rd
f(y)γ(dy) .
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Applying this to the dynamic programming equation and using the definition
of Wn gives the following discrete time Isaacs equation:

Wn(x, i) = sup
α∈Rd

inf
γ∈P(Rd) Rd

Wn x+
y

n
, i+ 1 γ(dy)

+
1

n
R(γ µ) +

Rd
α, y γ(dy)−H(α) .

To formally relate Wn(x, i) to the solution of a PDE, suppose that for a
smooth function W : Rd × [0, 1]→ R,

Wn(x, i) ≈W (x, i/n).
We also use the following relationship between relative entropy and the
function L defined as the Legendre transform of H (see [1, Section C.5]).
For any β ∈ Rd

inf R(γ µ) :
Rd
yγ(dy) = β = L(β). (2.1)

(It in fact turns out that the infimizing γ is of the form µα for the point α
that is conjugate to β in the sense of convex duality. It is for this reason
that the class of “exponential tilts” is asymptotically optimal.) We then
bring Wn(x, i) ≈W (x, i/n) to the right side of the Isaacs equation, expand
via Taylor series, insert the relation above and then multiply by n and send
n→∞ to get

Wt(x, t) + sup
α∈Rd

inf
β∈Rd

H(DW (x, t);α,β) = 0.

Here Wt denotes the partial derivative with respect to t, DW the gradient
in x, and

H(s;α,β) .= s,β + L(β) + α,β −H(α) (2.2)

for s,α,β ∈ Rd. Note that also one expects the terminal conditionW (x, 1) =
2F (x) to hold.

This PDE, which is also known as an Isaacs equation, was identified in
[2] and used there to study the performance of certain importance sampling
schemes. However, the purpose of the present paper is to show that it is only
the subsolution property that is essential. By a classical sense subsolution,
we mean a function W̄ : Rd× [0, 1]→ R with a smooth extension to an open
neighborhood of Rd × [0, 1] such that

W̄t(x, t) + sup
α∈Rd

inf
β∈Rd

H(DW̄ (x, t);α,β) ≥ 0
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for all (x, t) and W̄ (x, 1) ≤ 2F (x). We also consider a priori fixed change of
measure controls ᾱ(x, t), and call W̄ , ᾱ a subsolution/control pair if

W̄t(x, t) + inf
β∈Rd

H(DW̄ (x, t); ᾱ(x, t),β) ≥ 0

for all (x, t) and W̄ (x, 1) ≤ 2F (x). The definition of a subsolution simply
replaces the equality that appears in the Isaacs equation and terminal con-
dition with inequalities. However, we are only interested in bounding the
quantity Wn(0, 0) from below, with an upper bound being automatic from
the fact that the best possible performance is bounded. The inequalities in
the definition are those which give lower bounds when the smooth subsolu-
tion is combined with a verification argument to estimate the performance.

Remark 2.1 The supremum and infimum in the Isaacs equation can be
evaluated to give

Wt − 2H(−DW/2) = 0.
This equation immediately suggests the form of certain simple but impor-
tant solutions to the Isaacs equation—see the next section and the discussion
in Section 3.1 of [4]. However, the analysis of a specific proposed impor-
tance sampling scheme requires the equation and definition given above for
a subsolution/control pair.

In the remainder of this motivational section we give several simple ex-
amples of subsolutions and discuss how the Isaacs equation gives bounds on
the second moment of the associated schemes.

2.3 Two simple examples

Example 1. Let F be convex and bounded from below. Interchanging the
supremum and infimum in the Isaacs equation and evaluating the supremum
on α gives

Wt(x, t) + inf
β∈Rd

[ DW (x, t),β + 2L(β)] = 0.

The viscosity solution to this PDE and terminal condition is well known,
and indeed

W (x, t) = inf
β∈Rd

[2(1− t)L(β) + 2F (x+ (1− t)β)] .

(Strictly speaking, this solution need not be smooth. We will not concern
ourselves with such issues in this overview, but note that all the subsolutions
we work with will be classical sense, smooth subsolutions.)
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Although it is easy in this example to construct the exact solution, one
may wish to obtain a subsolution that will generate simpler importance
sampling schemes with the same asymptotic performance. As we will see, the
property that is needed so that the asymptotic performance of a subsolution
W̄ is optimal is W̄ (0, 0) = W (0, 0). Let β∗ achieve the infimum in the
definition of W (0, 0), and let α∗ satisfy

L (β∗) = α∗,β∗ −H (α∗)
(i.e., α∗ is conjugate to β∗). Let

W̄ (x, t)
.
= −2 α∗, x + 2tH (α∗) + 2 [L (β∗) + F (β∗)] .

Then W̄t(x, t) = 2H (α
∗) and DW̄ (x, t) = −2α∗. Since

W̄t(x, t) + sup
α∈Rd

inf
β∈Rd

H(DW̄ (x, t);α,β)

= 2H (α∗) + inf
β∈Rd

sup
α∈Rd

[ −2α∗,β + L(β) + α,β −H(α)]

= 2H (α∗) + inf
β∈Rd

[ −2α∗,β + 2L(β)]

= 2H (α∗)− 2 sup
β∈Rd

[ α∗,β − L(β)]

= 2H (α∗)− 2H (α∗)
= 0,

we have only to check the terminal condition. To simplify we assume L
is differentiable at β∗, a very mild condition. Then one can verify that
W̄ (x, 1) is a supporting hyperplane to 2F at β∗, and so W̄ (x, 1) ≤ 2F (x).
Note also that W̄ (0, 0) = 2 [L (β∗) + F (β∗)] = W (0, 0). Thus W̄ achieves
the maximum possible value among all subsolutions at (0, 0), with a much
simpler structure than the true solution.

Evaluating the infimum on β first, we find that in the case of the exact
solution

sup
α∈Rd

inf
β∈Rd

H(DW (x, t);α,β)

= sup
α∈Rd

− sup
β∈Rd

[−L(β) + −DW (x, t)− α,β +H(α)]

= − inf
α∈Rd

[H(−DW (x, t)− α) +H(α)] .

By convexity the supremum on α is achieved at ᾱ(x, t) = −DW (x, t)/2.
This is the importance sampling control that is naturally suggested by the
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exact solution. For the affine subsolution the supremum is at ᾱ(x, t) =
−DW̄ (x, t)/2 = α∗. The corresponding very simple importance sampling
scheme is well known in the literature.

Example 2. Here we take F (x) = F1(x) ∧ F2(x), where each Fi is convex
and bounded from below. Although the exact solution takes the same form
as in Example 1, there may not be an affine subsolution. However, it is
natural to consider the minimum of the affine subsolutions associated with
each of the Fi. Thus let

[L (β∗i ) + Fi (β
∗
i )] = inf

β∈Rd
[L(β) + Fi (β)] ,

let α∗i be the convex conjugate of β
∗
i , and set

W̄i(x, t) = −2 α∗i , x + 2tH (α∗i ) + 2 [L (β
∗
i ) + Fi (β

∗
i )] .

Let W̄ (x, t)
.
= W̄1(x, t) ∧ W̄2(x, t). Ignoring the issue of what is meant at

points where W̄ is not differentiable, this provides a subsolution. One can
check that

W̄ (0, 0) = 2 ∧2i=1 [L (β∗i ) + Fi (β∗i )] =W (0, 0).
To produce a smooth subsolution, it turns out that one can simply mol-

lify W̄ (x, t) [4]. Since W̄ is identified as the pointwise minimum of smooth
(affine) functions, we use the standard approximation which we will call
exponential weighting. Let δ be a small positive number, and

W̄ δ(x, t)
.
= −δ log

2

i=1

e−
1
δ
W̄i(x,t) .

Define the probability vector (ρ1(x, t), ρ2(x, t)) by

ρi(x, t)
.
= e−

1
δ
W̄i(x,t)/ e−

1
δ
W̄1(x,t) + e−

1
δ
W̄2(x,t) .

It follows that

W̄ δ
t (x, t) = ρ1(x, t)2H (α

∗
1) + ρ2(x, t)2H (α

∗
2) , (2.3)

DW̄ δ(x, t) = −ρ1(x, t)2α∗1 − ρ2(x, t)2α
∗
2. (2.4)

One can also easily verify that

W̄ (x, t) ≥ W̄ δ(x, t) ≥ W̄ (x, t)− δ log 2.
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Hence the value W̄ δ(0, 0) may be slightly smaller than W̄ (0, 0), but this
difference can be made arbitrarily small.

The optimizing ᾱ can be found as in Example 1:

ᾱ(x, t) = ρ1(x, t)α
∗
1 + ρ2(x, t)α

∗
2.

There are (at least) two ways that this control can be implemented. The
first is the one given at the beginning of this overview, i.e., µᾱ(X̄n

i ,i/n)
chooses

the distribution of Ȳ ni+1. The second implementation leads to the notion of
generalized subsolution/control, which will be discussed further in Section
5. With this implementation, one chooses between the indices 1 and 2,
conditioned on all the past data, with weights ρ1(X̄

n
i , i/n) and ρ2(X̄

n
i , i/n),

and then depending on the outcome generates Ȳ ni+1 according to µα∗1 or
µα∗2 . The latter implementation has some advantages when the underlying
process is more complicated than an iid sequence (i.e., a functional of a
Markov chain). Of course with this implementation the Radon-Nikodým
derivative takes a different form than the one given at the beginning of this
section. See Section 6.

Many more examples and a more systematic approach to the construc-
tion of subsolutions appears in [4].

Remark 2.2 There are other methods of mollification to produce smooth
subsolutions. For example, one can integrate W̄ against a smooth convolu-
tion kernel with support in the ball of radius δ around 0. It turns out that
the resulting approximation (abusing notation) W̄ δ also satisfies equations
(2.3) and (2.4) for some probability vector (ρ1(x, t), ρ2(x, t)). However, the
computation of ρi(x, t) involves numerical integration and can be computa-
tionally demanding. In contrast, for the exponential weighting mollification
we use, the {ρi(x, t)} are easy to compute.

2.4 Performance of the schemes

Finally we remark on the performance of the importance sampling schemes
so constructed. The main result of this paper, which will be proved for a
more complex process model and which can be generalized considerably, is
the following: If Zn is constructed according to the subsolution/control pair
(W̄ , ᾱ) and

Wn .= − 1
n
logE(Zn)2,

then
lim inf
n→∞ Wn ≥ W̄ (0, 0). (2.5)
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Moreover, the same result is true for generalized subsolutions and controls.
An elementary calculation based on Jensen’s inequality shows that for

any importance sampling schemes the best performance possible is W (0, 0),
where W is the exact solution. Hence the design problem becomes clear.
Construct a subsolution/control pair which can be implemented with rea-
sonable effort and for which W̄ (0, 0) is acceptably close to W (0, 0).

The remainder of this paper is devoted to the precise statement and
proof of (2.5) is a more general setting.

3 The General Setup

The broader collection of importance sampling problems we wish to analyze
includes sums of independent and identically distributed (iid) random vari-
ables and sums of functionals of a finite state Markov chain. The following
general model includes both as special cases. Let Y

.
= {Yi, i ∈ N0} denote

a Markov chain with state space S. Assume that S is a Polish space, and
let p(y, dz) denote the probability transition kernel. Let {bi(·), i ∈ N0} be a
sequence of iid random vector fields on S that is independent of the Markov
chain Y . For each y ∈ S, bi(y) is distributed according to a probability
measure, say m(·|y), on Rd. Our interest is in sums of the form

Xn
.
=
1

n

n

i=1

bi (Yi) . (3.1)

By choosing S to be a single point we recover the case of sums of iid random
variables, whereas taking bi(y) to be deterministic [i.e., m(·|y) is a single
atom for each y ∈ S] produces the case of functionals of a Markov chain.
The general case is also of interest, and occurs when the distribution of the
summand bi is modulated by the “exogenous” process Y .

Remark 3.1 In the literature on importance sampling for Markov chains
it is standard to include the initial state Y0 = y in the sample mean. The
sole reason to consider the sum from i = 1 to n, as in the definition (3.1)
of Xn, is that it significantly simplifies our notation in later analysis. We
point out, however, that there is no loss of generality, in that all the results
in this paper hold if we replace definition (3.1) by the standard one where
the summation is taken from i = 0 to i = n− 1.

Condition 3.1 The following conditions are assumed throughout the paper.
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1. There is a reference probability measure λ on S, a positive integer m0,
and δ ∈ (0, 1), such that

δλ(dy2) ≤ p(m0) (y1, dy2) ≤ 1
δ
λ(dy2)

for all y1 ∈ S. Here p(m0) is the m0-step transition kernel correspond-
ing to p.

2. The transition kernel p (y1, dy2) satisfies the Feller property, i.e., the
mapping y1 → p (y1, dy2) is continuous in the topology of weak conver-
gence of probability measures on S.

3. The mapping y → m(dz|y) is continuous in the topology of weak con-
vergence of probability measures on Rd.

4. For each α ∈ Rd,

sup
y∈S Rd

e α,z m(dz|y) <∞.

Note that parts 1, 2, and 3 of Condition 3.1 automatically hold when Y is
an irreducible finite state Markov chain.

For a pair of probability measures γ, µ ∈ P(S), we recall that the relative
entropy of γ with respect to µ was defined as

R(γ µ)
.
=

S
log

dγ

dµ
dγ

if γ µ and R(γ µ)
.
=∞ otherwise. The relative entropy R(γ µ) is always

non-negative, and is a convex, lower semicontinuous function of (γ, µ) ∈
P(S)×P(S). We refer the reader to [1, Section 1.4] for the proof and other
properties of relative entropy.

Under Condition 3.1, {Xn, n ∈ N} satisfies a large deviation principle
with the rate function

L(β) = inf R (τ θ ⊗ p) +R (θ ⊗ ν θ ⊗m) (3.2)

: [τ ]1 = [τ ]2 = θ,
S Rd

zν (dz |y ) θ (dy) = β .

Here τ is a probability measure on S × S and ν is a stochastic kernel on
Rd given S. The fact that a large deviation principle holds is proved in [7],
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although they do not identify the rate function in this form but rather in
terms of a Legendre transform. One can give a direct proof of the large
deviation result as in [1] which automatically gives this more concrete form
of the rate function (3.2), which is analogous to (2.1). See, in particular, the
analogous prelimit representation formula in [1, Section 4.4].

For a Borel measurable function F : Rd → R∪ {∞}, we wish to numeri-
cally approximate the quantity

Ey exp {−nF (Xn)} , (3.3)

where Ey denotes expected value given initial state Y0 = y. The special case
of Py {Xn ∈ A} is obtained by letting F (x) = 0 for x ∈ A and F (x) =∞ for
x /∈ A. Under various sets of regularity conditions on F , one has the large
deviation asymptotic approximation [8, 1]

− 1
n
logEy exp {−nF (Xn)}→ inf

β∈Rd
[F (β) + L(β)] . (3.4)

4 Properties of the Relevant Eigenfunctions

It is well known that certain eigenfunctions are needed to construct good
importance sampling schemes for functionals of a Markov chain. These
eigenfunctions are used to essentially “cancel off” the effect of conditioning
on the transition kernel. The eigenvalue/eigenfunction problem is to find,
for each α ∈ Rd, a real number G(α) and a function r(·;α) : S → [0,∞)
such that

S Rd
e α,z r(y;α)m (dz |y ) p(x, dy) = eG(α)r(x;α).

A key fact is that the eigenvalues may be defined in terms of the Legendre
transform of L. This is defined for α ∈ Rd by

H(α) = sup
β∈Rd

[ α,β − L(β)] ,

and is again a convex function.
The needed properties of the solution to this problem are summarized

in the following lemma [7, Section 3].

Lemma 4.1 Assume Condition 3.1. The following conclusions hold.

1. For each α ∈ Rd, there exists a solution (G(α), r(·;α)) to the eigen-
value/eigenfunction problem, with G(α) = H(α).
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2. Let a compact set K ⊂ Rd be given. Then there is δ ∈ (0, 1) such that
δ < r(y;α) < 1/δ for all y ∈ S and α ∈ K.

3. Let a compact set K ⊂ Rd be given. Then the map α → r(y;α) is
uniformly Lipschitz continuous over α ∈ K for each y ∈ S.

5 The Isaacs Equation and Subsolutions

As in Section 2, the partial differential equation associated with this impor-
tance sampling problem is the Isaacs equation

Wt(x, t) + sup
α∈Rd

inf
β∈Rd

H(DW (x, t);α,β) = 0,

where H is as defined in (2.2). We recall thatW : Rd×[0, 1]→ R,Wt denotes
the partial derivative with respect to t, and DW the gradient in x, and that
(W̄ , ᾱ) is a subsolution/control pair if W̄ is continuously differentiable on
Rd × (0, 1) with a uniformly bounded and uniformly Lipschitz continuous
derivative,

W̄t(x, t) + inf
β∈Rd

H(DW̄ (x, t); ᾱ(x, t),β) ≥ 0,

and
W̄ (x, 1) ≤ 2F (x). (5.1)

We will also use the term subsolution to refer to the W̄ component alone,
and will sometimes use the phrase even if it is not certain that the terminal
condition holds. With each subsolution/control pair, one can associate an
importance sampling scheme. The construction and analysis of this scheme
are carried out in detail in the next two sections.

A companion paper [4] describes in detail how to construct subsolu-
tion/control pairs that satisfy the terminal condition (5.1). As we saw
in Section 2, it is often the case that one can work with simple subsolu-
tions (e.g., functions that are affine in x and t) for certain functionals F ,
and then use the pointwise minimum of such subsolutions to handle more
complex F . Suppose we label the individual smooth subsolution/control
pairs (W̄k, ᾱk), k = 1, . . . ,K. Let W (x, t)

.
= ∧Kk=1W̄k(x, t). Since W is not

smooth, we mollify and use convexity to obtain a smooth subsolution de-
noted by W̄ . If ᾱ(x, t) is defined as a saddle point in the min/max problem

sup
α∈Rd

inf
β∈Rd

H(DW̄ (x, t);α,β),

then (W̄ , ᾱ) is a subsolution/control pair.
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For the general model of this paper the individual subsolutions W̄k are
often affine functions in (x, t), and each ᾱk is a constant. In this case, the
change of measure associated with each subsolution/control pair (W̄k, ᾱk) is
fairly simple. For example, in the case of functionals of a Markov process
we need only compute the corresponding eigenfunction at the single point
ᾱk. However, the subsolution/control pair (W̄ , ᾱ), where ᾱ is defined by the
saddle point property, produces a state and time dependent ᾱ, and thus a
scheme that could be significantly more complicated.

As discussed in Section 2, a scheme which preserves the simplicity of the
affine subsolutions can be found by appropriately randomizing between the
individual importance sampling schemes associated with (W̄k, ᾱk) accord-
ing to the mollification weights. Schemes of this sort require the following
more complicated notion of a subsolution/control pair, which subsumes the
previous special case. As suggested by the examples given in Section 2, it is
typically the case that rk = (W̄k)t and sk = DW̄k in the definition below.

Definition 5.1 The collection (W̄ , ρk, ᾱk) will be called a generalized sub-
solution/control if the following conditions hold. ρk : Rd × [0, 1] → R, k =
1, . . . ,K is a partition of unity, i.e., each ρk is non-negative, and

K

k=1

ρk(x, t) = 1

for all (x, t) ∈ Rd × [0, 1]. The functions ρk and ᾱk, k = 1, . . . ,K, are uni-
formly bounded and Lipschitz continuous. W̄t and DW̄ have representations

W̄t(x, t) =
K

k=1

ρk(x, t)rk(x, t), DW̄ (x, t) =
K

k=1

ρk(x, t)sk(x, t),

where each rk and sk is uniformly bounded and Lipschitz continuous, and
for each k = 1, . . . ,K

rk(x, t) + inf
β∈Rd

H(sk(x, t); ᾱk(x, t),β) ≥ 0.

It is only the (ρk, ᾱk) part of this collection that will be used to define
the importance sampling scheme (see the next section). As noted in Section
2, a key measure of efficiency of any importance sampling scheme associ-
ated with the collection (W̄ , ρk, ᾱk) is W̄ (0, 0), with larger values of W̄ (0, 0)
corresponding to greater variance reduction. The design problem is to max-
imize W̄ (0, 0), subject to the constraints that (W̄ , ρk, ᾱk) be a generalized
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subsolution/control, and that the terminal condition (5.1) hold. There is
considerable flexibility, and an appreciation of all the possibilities for even
simple problems requires some experience. These issues are explored at
length in [4].

6 Importance Sampling Based on Subsolutions

As discussed in Section 2 and many other places, the idea behind importance
sampling is to simulate the system of interest under an alternative distribu-
tion, multiply the sample by the inverse of the Radon-Nikodým derivative,
and then consider the sample average. The main issue is how to choose the
new distribution so that the variance of the estimate is as small as possible.
It is also by now well known that seemingly reasonable schemes can perform
very poorly [5, 6], whence the development of usable tools for the analysis
of variance is essential if the method is ever to be used with any confidence.
As we now show, the subsolution property gives strong quantitative control
on the second moments of the estimates under the scheme.

Let (W̄ , ρk, ᾱk) be a generalized subsolution/control. We recall the eigen-
value/eigenfunction relation

S Rd
e α,z r(y;α)m (dz |y ) p(x, dy) = eH(α)r(x;α).

It follows that for each α ∈ Rd

P (y1, dy2, dz;α) = e
α,z −H(α) · r(y2;α)

r(y1;α)
· p(y1, dy2) ·m (dz |y2 ) (6.1)

defines a probability measure on S × Rd. These probability measures, the
weights ρk(x, t), and the functions ᾱk(x, t) will be used to construct the
importance sampling scheme. To this end, let

ᾱnk,j(x)
.
= ᾱk(x, j/n), ρnk,j(x)

.
= ρk(x, j/n).

Processes X̄n
j , Ȳ

n
j , and b̄

n
j , analogous to Xj , Yj , and bj(Yj), are constructed

recursively as follows. Let X̄n
0 = 0 and Ȳ0 = Y0 = y. Suppose that X̄

n
j = x

and Ȳ nj = y1 are given. We then simulate (Ȳ
n
j+1, b̄

n
j+1) under the distribution

K

k=1

ρnk,j(x)P y1, dy2, dz; ᾱ
n
k,j(x) ,
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which can be thought of as a randomized version of P (y1, dy2, dz; ᾱ
n
k,j(x)),

with the weights given by ρnk,j(x). Finally, X̄
n
j+1

.
= X̄n

j +b̄
n
j+1/n. An unbiased

estimate for E exp{−nF (Xn)} is then obtained by averaging replications of

Zn
.
= e−nF (X̄

n
n )
n−1

j=0

K

k=1

ρnk,j(X̄
n
j ) · e ᾱnk,j(X̄

n
j ),b̄

n
j+1 −H(ᾱnk,j(X̄n

j ))

· r(Ȳ
n
j+1; ᾱ

n
k,j(X̄

n
j ))

r(Ȳ nj ; ᾱ
n
k,j(X̄

n
j ))

−1
. (6.2)

As noted previously, the numerical estimate in importance sampling is
the sample average of independent replications of Zn. Since the goal is to
control the sample variance, it is enough to bound the second moment of a
single replication.

7 Statement and Proof of the Main Result

In this section we present the main result, which is an asymptotic bound
on the second moment for importance sampling estimator associated with a
given subsolution. Although both the quantity being approximated and the
importance sampling scheme depend on the initial state Y0 = y, to simplify
the exposition, the dependence of expected values on y is not explicitly
denoted.

Theorem 7.1 Assume Condition 3.1. Let (W̄ , ρk, ᾱk) be a generalized sub-
solution/control such that 2F (x) ≥ W̄ (x, 1) for every x ∈ Rd. Let V n be the
second moment of a single replication used in the corresponding importance
sampling scheme for the estimation of E exp{−nF (Xn)}, that is,

V n
.
= E (Zn)2 ,

where Zn is defined in (6.2). Let

Wn .= − 1
n
log V n.

Then
lim inf
n→∞ Wn ≥ W̄ (0, 0).
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Outline of the Proof of Theorem 7.1. By expressing the second moment
in terms of the original random variables, we can write

V n = Ee−2nF (Xn)
n−1

j=0

K

k=1

ρnk,j(Xj) · e ᾱnk,j(Xj),bj+1(Yj+1) −H(ᾱnk,j(Xj))

· r(Yj+1; ᾱ
n
k,j(Xj))

r(Yj ; ᾱnk,j(Xj))

−1
.

The proof is divided into 5 parts.

1. Representation. We replace V n by an upper bound, and then derive a
stochastic control representation for the normalized logarithm of this
quantity. This produces a lower bound for Wn.

2. Tightness. Associate certain stochastic processes and measure valued
processes to the representation. Under the assumption that the costs
in the representation are bounded as n→∞, show that these processes
are tight.

3. Identification of limits. Derive characterizations and relations between
the limit processes.

4. Analysis of the cost. Go back to the representation, and analyze the
asymptotics of the cost using weak convergence.

5. Verification. Finally, use the Isaacs equation and a classical verifica-
tion argument to show that the proper asymptotic bound holds for the
representation.

The chain rule for relative entropy (see, e.g., [1, Theorem C.3.1]) will
be used several times in the proof. If S1 and S2 are Polish spaces and
µ, ν ∈ P (S1 × S2), then

R (µ ν ) = R ([µ]1 [ν]1 ) +
S1

R (µ(·|y1) ν(·|y1)) [µ]1(dy1) (7.1)

7.1 Representation.

Using convexity of ex and the definition G(x)
.
= W̄ (x, 1) ≤ 2F (x), the

second moment V n is bounded above by

Ṽ n
.
= Ee−nG(Xn)

n−1

j=0

exp −
K

k=1

ρnk,j (Xj) ᾱnk,j(Xj), bj+1(Yj+1)
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−H ᾱnk,j(Xj) + log
r(Yj+1; ᾱ

n
k,j(Xj))

r(Yj ; ᾱnk,j(Xj))
.

Define

W̃n .= − 1
n
log Ṽ n.

Clearly W̃n ≤Wn. Therefore, it suffices to show

lim inf
n→∞ W̃n ≥ W̄ (0, 0). (7.2)

We would like to use the variational representation for exponential inte-
grals to derive a stochastic control representation for W̃n. Because of the

unbounded terms ᾱnk,j(Xj), bj+1(Yj+1) and G (Xn), an extension of this

representation is required.

Lemma 7.2 Let λ be a probability measure on a measurable space (Ω,F),
and f : Ω → R a measurable function. If e−f and fe−f are integrable with
respect to λ, then

− log
Ω
e−f dλ = inf

γ
R(γ λ) +

Ω
f dγ ,

where the infimum is taken over all probability measures γ for which the sum
on the right-hand-side is meaningful (i.e., not of the form ∞−∞).

The proof only involves minor changes to that of [1, Proposition 1.4.2] and
is thus omitted. It is easy to check that the condition for this representation,
that is, the finiteness of the two integrals, holds in our case. This is due to
the bound on the moment generating function of the bi(y) and the assumed
Lipschitz property of G(x)

.
= W̄ (x, 1).

Once one has this general relative entropy representation for exponential
integrals, it is easy to extract a more useful form by a standard argument.
Consider the total distribution, say λ, of the component random variables
used to construct the process [here the Yi and bi(Yi)], and write the expec-
tation in terms of an exponential integral against this distribution. Apply
the relative entropy representation to this exponential integral, and let γ be
the probability measure introduced by the representation. Now factor both
the original distribution λ and the new probability measure γ as a product
of conditional distributions. For example, if λ were a distribution on S3 it
would be factored as [λ]1(dx1)[λ]2(dx2|x1)[λ]3(dx3|x1, x2). One then decom-
poses the relative entropy according to the chain rule (7.1), giving rise to
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a relative entropy cost for the perturbation of the conditional distribution
of each component random variable. Finally, for convenience one writes the
right hand side of the relative entropy representation in terms of this decom-
position and random variables distributed according to the new probability
measure. Since the analogous elementary proof appears in many places (e.g.,
[1, Theorem B.2.2]), we simply state the final result. Consider a collection of
stochastic kernels µnj and ν

n
j , where µ

n
j is allowed to depend in any measur-

able way on {b̃ni , 0 ≤ i ≤ j} and {Ỹ ni , 0 ≤ i ≤ j+1}, νnj is allowed to depend
in any measurable way on {b̃ni , 0 ≤ i ≤ j} and {Ỹ ni , 0 ≤ i ≤ j}, and µnj and
νnj choose the conditional distributions of b̃

n
j+1 and Ỹ

n
j+1, respectively. To

simplify the notation the dependencies of µnj and νnj on the past will not be
made explicit. Let

J(µn· , ν
n
· )

.
= Ẽ

1

n

n−1

j=0

K

k=1

ρnk,j(X̃
n
j ) R µnj (·) m(·|Ỹ nj+1) +R νnj (·) p(Ỹ nj , ·)

+ ᾱnk,j(X̃
n
j ), b̃

n
j+1 −H ᾱnk,j(X̃

n
j ) + log

r(Ỹ nj+1; ᾱ
n
k,j(X̃

n
j ))

r(Ỹ nj ; ᾱ
n
k,j(X̃

n
j ))

+G(X̃n
n ) . (7.3)

Then W̃n .= inf J(µn· , νn· ), where the infimum is over all such collections.

7.2 Tightness

To analyze the asymptotics of W̃n we first establish the tightness of the
processes that appear therein. For j = 0, . . . , n− 1 and t ∈ [j/n, (j + 1)/n)
define

X̃n(t)
.
= X̃n

j

νn (dy2 |t) .
= νnj (dy2)

µn (dz |t) .
= µnj (dz)

θn (dy1 × dy2 |t) .
= δỸ nj

(dy1) ν
n
j (dy2)

γn (dy1 × dy2 |t) .
= δỸ nj

(dy1) p (y1, dy2)

ζn (dy × dz |t) .
= δỸ nj+1

(dy)µnj (dz)

ηn (dy × dz |t) .
= δỸ nj+1

(dy)m (dz |y ) ,
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and let left continuity define these processes at t = 1. We also set, for Borel
subsets A ⊂ S × S and B ⊂ [0, 1],

θn (A×B) .=
B
θn (A |t) dt.

Then θn is a random probability measure on space (S × S) × [0, 1]. Define
in the analogous fashion random probability measures νn, µn, γn, ζn, and
ηn on spaces S × [0, 1],Rd × [0, 1], (S × S) × [0, 1], (S × Rd) × [0, 1], and
(S ×Rd)× [0, 1], respectively.

Lemma 7.3 Assume Condition 3.1 and let (W̄ , ρk, ᾱk) be a generalized sub-
solution/control. Consider any subsequence and collection {(µnj , νnj ), j =
0, 1, . . . , n − 1} for which the expected cost J(µn· , νn· ) as defined in (7.3) is
uniformly bounded from above. Then (with the supremum on n restricted to
elements of the subsequence)

lim
C→∞

sup
n
Ẽ

 1
n

n

j=1

b̃nj 1{ b̃nj ≥C}

 = 0,
the collection

X̃n, νn, µn, θn, γn, ζn, ηn

is tight, {X̃n(1)} is uniformly integrable, and {µn} is uniformly integrable
in the sense that

lim
C→∞

sup
n
Ẽ

Rd×[0,1]
y 1{ y ≥C}µn(dy × dt) = 0.

The proof of the lemma is given in the appendix. However, it is worth noting
that the first estimate is the key result, and that the tightness and uniform
integrability follow easily from this.

In order to show the desired lower bound (7.2), all we need to show is

lim inf
n→∞ J(µn· , ν

n
· ) ≥ W̄ (0, 0). (7.4)

for any sequence {(µnj , νnj ), j = 0, . . . , n−1}. Abusing notation a bit, assume
from now on that {(µnj , νnj ), j = 0, . . . , n − 1} is an arbitrary subsequence
such that the cost J(µn· , νn· ) is uniformly bounded from above. Clearly, we
only need to show inequality (7.4) along every such subsequence.
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Owing to the positivity, boundedness, and Lipschitz properties of the
eigenfunctions and ᾱk (see Lemma 4.1), there exists M < ∞ such that for
all y ∈ S, k = 1, . . . ,K, n ∈ Z+, j ∈ {1, . . . , n}, x1 ∈ Rd, and x2 ∈ Rd,

log
r (y; ᾱk,j−1 (x1))
r (y; ᾱk,j (x2))

= log
r (y; ᾱk (x1, (j − 1)/n))
r (y; ᾱk (x2, j/n))

≤M(|x1 − x2|+1/n).

Thanks to the first part of Lemma 7.3, for any δ > 0 and along this subse-
quence with bounded cost,

lim sup
n→∞

Ẽ

 1
n

n

j=1

b̃nj 1{ b̃nj ≥nδ}

 = 0.
Therefore, the Lipschitz properties of the ρk that are part of the definition
of a generalized subsolution and the definition X̃n

j+1 = X̃
n
j + b̃

n
j+1/n imply

lim sup
n→∞

Ẽ

 1
n

n−1

j=0

K

k=1

ρnk,j(X̃
n
j ) log

r(Ỹ nj+1; ᾱ
n
k,j(X̃

n
j ))

r(Ỹ nj ; ᾱ
n
k,j(X̃

n
j ))


≤ lim sup

n→∞
Ẽ

 1
n

n

j=1

K

k=1

ρnk,j(X̃
n
j ) log

r(Ỹ nj ; ᾱ
n
k,j−1(X̃

n
j−1))

r(Ỹ nj ; ᾱ
n
k,j(X̃

n
j ))


+ lim sup

n→∞
Ẽ

 1
n

n−1

j=0

K

k=1

ρnk,j+1(X̃
n
j+1)− ρnk,j(X̃

n
j )

· log r(Ỹ nj+1; ᾱnk,j(X̃n
j ))

= 0.

Thus we need only prove the lower bound

lim inf
n→∞ Ẽ

1

n

n−1

j=0

K

k=1

ρnk,j(X̃
n
j ) R µnj (·) m(·|Ỹ nj+1) +R νnj (·) p(Ỹ nj , ·)

+ ᾱnk,j(X̃
n
j ), b̃

n
j+1 −H ᾱnk,j(X̃

n
j ) +G(X̃n

n ) ≥ W̄ (0, 0).

Note that the relative entropy terms do not depend on k, and so they can
be moved past the corresponding sum. Thanks to the uniform boundedness
and Lipschitz continuity of ρk and ᾱk, the uniform integrability of {µn}
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(Lemma 7.3), and the chain rule for relative entropy (7.1), all we need to
show is the lower bound

lim inf
n→∞ J̄n ≥ W̄ (0, 0), (7.5)

where

J̄n
.
= Ẽ R (ζn ηn ) +R (θn γn )−

K

k=1

1

0
ρk(X̃

n(t), t)H(ᾱk(X̃
n(t), t))dt

+
K

k=1 Rd×[0,1]
ρk(X̃

n(t), t) ᾱk(X̃
n(t), t), z µn (dz × dt) +G(X̃n(1)) .

In order to show (7.5), we need to identify limits of the involved processes.
That is the goal of the next subsection.

7.3 Identification of the Limits.

Lemma 7.4 Assume Condition 3.1, and consider any subsequence along
which J(µn· , νn· ) is uniformly bounded from above and

X̃n, νn, µn, θn, γn, ζn, ηn → X̃, ν, µ, θ, γ, ζ, η

in distribution. Then the following conclusions hold. Each of the measures
ν, µ, θ, γ, ζ, η (for example, ν) can be factored in the form ν (dy × dt) =
ν (dy |t) dt, where dt is Lebesgue measure. Furthermore, w.p.1

X̃(t) =
[0,t] Rd

zµ (dz |s) ds,

γ (dy1 × dy2 |t) = ν (dy1 |t) p (y1, dy2)
η (dy × dz |t) = ν (dy |t)m (dz |y ) ,

and
[θ]1(dy|t) = [θ]2(dy|t) = ν(dy|t),

[ζ]1(dy|t) = ν(dy|t), [ζ]2(dy|t) = µ(dy|t).

Proof. The fact that the t-marginal of the random measures is Lebesgue
measure follows from the weak convergence and the fact that the same is
true of the analogous prelimit measures. Also, the existence of the factored
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form is standard, and follows from the same sort of arguments one uses to
prove the existence of regular conditional distributions [1, Lemma 3.3.1].

We next consider the representation for X̃, and use an argument similar
to that of [1, Theorem 5.3.5]. For any time t of the form j/n, 0 ≤ j ≤ n, we
can write

X̃n (j/n) =
1

n

j−1

i=0 Rd
zµni (dz) +M

n (j/n)

=
j/n

0 Rd
zµn (dz × dt) +Mn (j/n)

where

Mn (j/n)
.
=
1

n

j−1

i=0

b̃ni+1 −
Rd
zµni (dz)

is a martingale. Fix δ > 0, and define random variables and random mea-
sures

cnj
.
= b̃nj 1{ b̃nj ≥nδ}, λnj (dz)

.
= µnj (dz)1{ z ≥nδ} + δ0(dz)µ

n
j ({ z < nδ}),

where δ0(dz) is the probability measure with mass 1 at zero. It is not difficult
to see that λnj gives the conditional distribution of c

n
j+1, whence

Nn(j/n)
.
=
1

n

j−1

i=0

cni+1 −
Rd
zλni (dz)

is also a martingale. By a standard submartingale inequality

P̃ max
j=1,...,n

Mn(j/n)−Nn(j/n) ≥ ε

≤ 1

ε2
Ẽ

 1

n

n−1

j=0

b̃nj+11{ b̃nj+1 <nδ} − Rd
zµnj (dz)1{ z <nδ}

2
=

1

n2ε2

n−1

j=0

Ẽ b̃nj+11{ b̃nj+1 <nδ} − Rd
zµnj (dz)1{ z <nδ}

2

≤ 1

n2ε2

n

j=1

Ẽ b̃nj 1{ b̃nj <nδ}
2

≤ δ

nε2

n

j=1

Ẽ b̃nj 1{ b̃nj <nδ}
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≤ δ

ε2

n

j=1

Ẽ
1

n
b̃nj .

By Chebyshev’s inequality and a conditioning argument,

P̃ max
j=1,...,n

Nn(j/n) ≥ ε ≤ P̃

 1n
n

j=1

b̃nj 1{ b̃nj ≥nδ} ≥ ε/2


+ P̃

 1n
n−1

j=0 { z ≥nδ}
z µnj (dz) ≥ ε/2


≤ 2

ε
Ẽ

 1
n

n

j=1

b̃nj 1{ b̃nj ≥nδ}


+
2

ε
Ẽ

 1
n

n−1

j=0 { z ≥nδ}
z µnj (dz)


=

4

ε
Ẽ

 1
n

n

j=1

b̃nj 1{ b̃nj ≥nδ}

 .
The last quantity tends to zero as n tends to infinity for each fixed δ > 0 by
Lemma 7.3. Sending first n → ∞ and then δ → 0, it follows that for each
ε > 0

P̃ max
j=1,...,n

Mn(j/n) ≥ 2ε → 0

as n→∞. Thus

X̃n(j/n)−
j/n

0 Rd
zµn(dz × dt)→ 0

uniformly in j ∈ {1, . . . , n}, in probability. Using the uniform integrability
and weak convergence of µn we justify the limit

X̃(t)−
t

0 Rd
zµ(dz × ds) = 0

for all t ∈ [0, 1], w.p.1. When combined with the factorization µ (dz × ds) =
µ (dz|s) ds, this proves the representation for X̃.

Finally, we discuss the formulas for the limit measures. These all follow
easily from analogous properties of the prelimit measures. For example,
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consider the random probability measure θn. Let g be an arbitrary bounded
continuous function on S. By definition,

S×[0,1]
g(y)[θn]1,3(dy × dt) = 1

n

n−1

j=0

g(Ỹ nj ) =
1

n

n−1

j=0

g(Ỹ nj+1) + In,

where In is an error term with

|In| ≤ 2

n
g ∞

almost surely. Fix arbitrary ε > 0. Let N0 ∈ N be such that |In| ≤ ε/2 for
all n ≥ N0. Since νnj is the conditional distribution of Ỹ nj+1, by Chebyshev’s
inequality and a conditioning argument, for n ≥ N0

P̃
S×[0,1]

g(y)[θn]1,3(dy × dt)−
S×[0,1]

g(y) [θn]2,3 (dy × dt) ≥ ε

≤ P̃

 1

n

n−1

j=0

g(Ỹ nj+1)−
S
g(y)νnj (dy) ≥ ε/2


≤ 4

ε2
Ẽ

 1
n2

n−1

j=0

g(Ỹ nj+1)−
S
g(y)νnj (dy)

2


≤ 16 g 2
∞

ε2n
.

By Fatou’s Lemma

P̃
S×[0,1]

g(y) [θ]1,3 (dy × dt)−
S×[0,1]

g(y) [θ]2,3 (dy × dt) ≥ ε = 0.

Thus [θ]1,3 = [θ]2,3 almost surely. Since [θ
n]2,3 = νn,

[θ]1,3(dy × dt) = [θ]2,3(dy × dt) = ν(dy × dt) = ν(dy|t)dt,
which proves [θ]1(dy|t) = [θ]2(dy|t) = ν(dy|t).

With regard to the decomposition of γ, an analogous argument shows
that, for any ε > 0 and bounded continuous functions g1, g2 on S, we have

0 = lim
n→∞ P̃ S2×[0,1]

g1(y1)g2(y2)γ
n(dy1 × dy2 × dt)

−
S2×[0,1]

g1(y1)g2(y2)ν
n(dy1 × dt)p(y1, dy2) ≥ ε
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However, by the Feller property the mapping y1 → S g(y2)p(y1, dy2) is
bounded and continuous. The decomposition of γ now follows from the weak
convergence of γn and νn, Fatou’s Lemma, the arbitrariness of ε, and the
fact that product functions are convergence determining (see, for example,
[1, Theorem A.3.14]).

The expressions for ζ and η can be proved in the same way, and we omit
the proof.

7.4 Analysis of the cost.

We claim that lim infn→∞ J̄n [see equation (7.5)] is bounded below by

Ẽ R (θ γ ) +R (ζ η )−
K

k=1 [0,1]
ρk(X̃(t), t)H(ᾱk(X̃(t), t))dt

+
K

k=1 Rd×[0,1]
ρk(X̃(t), t) ᾱk(X̃(t), t), z µ (dz × dt) +G(X̃(1)) .

The bound for the first two relative entropy terms follows from the weak
convergence, Fatou’s Lemma, and the lower semicontinuity of relative en-
tropy [1, Lemma 1.4.3]. The convergence of the next two terms follows from
the weak convergence, the continuity and boundedness properties of the ρk
and ᾱk, and the Dominated Convergence Theorem. Lastly, we show that

lim inf
n→∞ Ẽ G(X̃n(1)) ≥ Ẽ G(X̃(1)) . (7.6)

Indeed, by the Lipschitz property of W̄ , there exists C > 0 such that

G(x) ≥ −C( x + 1).

By Fatou’s Lemma,

lim inf
n→∞ Ẽ G(X̃n(1)) + C X̃n(1) ≥ Ẽ G(X̃(1)) + C X̃(1) .

Since the uniform integrability of {X̃n(1)} proved in Lemma 7.3 implies
limn→∞ Ẽ X̃n(1) = Ẽ X̃(1) , the inequality (7.6) follows.

Using the factorization properties of relative entropy (7.1), we now do
some rewriting of the various terms. We have

R (θ γ ) =
1

0
R (θ(dy1 × dy2|t) γ(dy1 × dy2|t)) dt

R (ζ η ) =
1

0
R (ζ(dy × dz|t) η(dy × dz|t)) dt.
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However, by Lemma 7.4 [θ]1 (dy |t) = [θ]2 (dy |t) = ν (dy |t), γ(dy1×dy2|t) =
ν(dy1|t)p(y1, dy2), η(dy×dz|t) = ν(dy|t)m(dz|y), and ζ(dy×dz|t) = ν(dy|t)q(dz|y, t)
for some stochastic kernel q. Since

S Rd
zq(dz|y, t)ν(dy|t) =

S×Rd
zζ(dy × dz|t)

=
Rd
z[ζ]2(dz|t)

=
Rd
zµ(dz|t)

.
= β(t),

it follows from the definition of L in (3.2) that

R (θ γ ) +R (ζ η ) ≥
1

0
L (β(t)) dt,

Moreover, the definition of β(t) gives

Rd×[0,1]
ᾱ(X̃(t), t), z µ (dz × dt) =

[0,1]
ᾱ(X̃(t), t),β(t) dt.

We thus obtain a lower bound for lim infn→∞ J̄n in the form

Γ
.
= Ẽ

1

0

K

k=1

ρk(X̃(t), t) L (β(t))−H(ᾱk(X̃(t), t))

+ ᾱk(X̃(t), t),β(t) dt+G(X̃(1)) .

7.5 Verification.

We now do a classical verification argument to show Γ ≥ W̄ (0, 0). By
assumption (see Definition 5.1),

W̄t(X̃(t), t) + DW̄ (X̃(t), t),β(t)

=
K

k=1

ρk(X̃(t), t) rk(X̃(t), t) + sk(X̃(t), t),β(t)

≥
K

k=1

ρk(X̃(t), t) L(β(t)) + ᾱk(X̃(t), t),β(t) −H(ᾱk(X̃(t), t)) .
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Integrating both sides from 0 to 1, and using the fact that β(t) = dX̃(t)/dt,

E
1

0

K

k=1

ρk(X̃(t), t) L(β(t)) + ᾱk(X̃(t), t),β(t) −H(ᾱk(X̃(t), t)) dt

≥ W̄ (0, 0)−EW̄ (X̃(1), 1)
Since G(x) = W̄ (x, 1), upon bringing this term to the left hand side we
obtain Γ ≥ W̄ (0, 0), thus completing the proof of Theorem 7.1.

8 Appendix

Proof of Lemma 7.3. The proof uses ideas from [1, Proposition 5.3.2].
We start by observing a few facts, namely, that

−2G X̃n
n ≤ 2C 1

n

n

i=1

b̃ni + 1 ,

that the eigenfunctions r(y;α) are bounded uniformly from above and below
away from zero on {α : α ≤ C}, that H(α) is bounded from below on this
set, and that relative entropy is non-negative. These imply the existence of
C1 <∞ and C2 <∞ such that

sup
n
Ẽ

1

n

n−1

i=0

R µni (·) m(·|Ỹ ni+1 ) − C1
1

n

n

i=1

b̃ni ≤ C2, (8.1)

where the supremum is over the same subsequence as in the statement of the
lemma. It follows immediately that µni (·) m(·|Ỹ ni+1) for all i = 0, . . . , n−
1, with probability one. We can find non-negative, measurable, random
functions fni such that f

n
i is a measurable version of dµ

n
i (·) /dm(·|Ỹ ni+1).

We use the fact that for all a ≥ 0, c ≥ 0, and ρ ≥ 1,
ac ≤ eρa + 1

ρ
(c log c− c+ 1) .

Since c log c− c+ 1 ≥ 0, it follows that

Ẽ
1

n

n

i=1

b̃ni ≤ Ẽ
1

n

n−1

i=0 Rd
z fni (z)m(dz|Ỹ ni+1)

≤ Ẽ
1

n

n−1

i=0

1

ρ Rd
(fni (z) log f

n
i (z)− fni (z) + 1)m(dz|Ỹ ni+1)

+
1

n

n

i=1 Rd
eρ z m(dz|Ỹ ni+1) .
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Under Condition 3.1, for each ρ there is a finite and uniform bound B(ρ) on

Rd e
ρ z m (dz |y ) for all y ∈ S. This allows us to continue the inequality as

Ẽ
1

n

n

i=1

b̃ni ≤ B(ρ) + 1
ρ
Ẽ

1

n

n−1

i=0

R µni (·) m(·|Ỹ ni+1) .

Choosing 1/ρ = 2C1 and rearranging (8.1),

1

2
sup
n
Ẽ

1

n

n−1

i=0

R µni (·) m(·|Ỹ ni+1) ≤ C2 +B 1

2C1
.

By a very similar argument to that just used, we find

Ẽ
1

n

n

i=1

b̃ni 1{ b̃ni ≥C} ≤ sup
y∈S Rd

1{ z ≥C}eρ z m(dz|y)

+
1

ρ
Ẽ

1

n

n−1

i=0

R µni (·) m(·|Ỹ ni+1) .

Under Condition 3.1,

sup
y∈S Rd

1{ z ≥C}eρ z m (dz |y ) ≤ e−C sup
y∈S Rd

e(ρ+1) z m (dz |y )→ 0

as C →∞. Since we already have a uniform bound on

Ẽ
1

n

n−1

i=0

R µni (·) m(·|Ỹ ni+1) ,

the first part of the lemma follows by first sending C →∞ and then ρ→∞.
We define a piecewise linear process X̄n by setting

dX̄n(t)

dt
= b̃ni for t ∈

i− 1
n
,
i

n
.

Then X̄n is the piecewise linear interpolation that agrees with X̃n at times
of the form i/n, and hence if X̄n converges in distribution in the sup norm
to a limit X̃ then so does X̃n, since

sup
0≤t≤1

X̃n(t)− X̄n(t) → 0

30



in probability as n→∞. Therefore, in order to show the tightness of {X̃n},
it suffices to show that {X̄n} is tight. To this end, define the modulus

wn(δ)
.
= sup
{s,t∈[0,1]:|t−s|≤δ}

X̄n(t)− X̄n(s) .

Tightness of X̄n will hold if for each ε > 0 and η > 0 there is δ ∈ (0, 1)
such that for all n

P̃ {wn(δ) ≥ ε} ≤ η.

Choose C <∞ such that for all n

Ẽ
1

n

n

i=1

b̃ni 1{ b̃ni ≥C} ≤ ηε/2,

and let δ
.
= (ε/2C) ∧ 1. Then since Cδ ≤ ε/2

P̃ {wn(δ) ≥ ε} ≤ P̃ sup
{s,t∈[0,1]:|t−s|≤δ}

s∨t

s∧t
dX̄n(r)

dr
dr ≥ ε

≤ P̃ sup
{s,t∈[0,1]:|t−s|≤δ}

s∨t

s∧t
dX̄n(r)

dr
1 dX̄n(r)

dr
≥C dr ≥ ε/2

≤ P̃
1

0

dX̄n(r)

dr
1 dX̄n(r)

dr
≥C dr ≥ ε/2

≤ 2

ε
Ẽ

1

n

n

i=1

b̃ni 1{ b̃ni ≥C}
≤ η.

As for the uniform integrability of {X̃n(1)}, observe that for every C ≥ 0,

X̃n(1) ≤ 1

n

n

i=1

b̃ni ≤ C +
1

n

n

i=1

b̃ni 1{ b̃ni ≥C}.

This implies

X̃n(1) 1{ X̃n(1) ≥2C} ≤ C1{ X̃n(1) ≥2C} +
1

n

n

i=1

b̃ni 1{ b̃ni ≥C}

≤ X̃n(1)

2
1{ X̃n(1) ≥2C} +

1

n

n

i=1

b̃ni 1{ b̃ni ≥C},
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or

X̃n(1) 1{ X̃n(1) ≥2C} ≤
2

n

n

i=1

b̃ni 1{ b̃ni ≥C},

which in turn implies the uniform integrability of {X̃n(1)}.
The tightness and uniform integrability properties of the random mea-

sure {µn(dy × dt)} is easy. Indeed,

Ẽ
Rd×[0,1]

y 1{ y ≥C}µn(dy × dt) = Ẽ

n−1
j=0 Rd

y 1{ y ≥C}µnj (dy)


= Ẽ

1

n

n

i=1

b̃ni 1{ b̃ni ≥C} .

Uniform integrability holds since the last quantity tends to zero uniformly in
n as C →∞, and the tightness is a consequence of the uniform integrability
[1, Theorem A.3.17].
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